
Study carried out by the Data Science Practice
Special thanks to Pierre-Edouard THIERY

AVRIL 2020

How to represent a
Blockchain through a
mathematical model?

Summary

Introduction							 	 1

1. Some Mathematical Preliminaries 			 1

2. A First Approach Of Bitchoin Via Mathematics 2

3. The Construction Of Bitcoin Blockchain Step by Step 			 3

4. A First Insight Into The Security Of The Blockchain 5

Conclusion								 6

References								 6

Introduction
When it comes down to Data Science, most people directly
think of Machine Learning and its ever more powerful algo-
rithms; nonetheless Data Science would not be possible with-
out data, and the first condition for a widespread use consists
in storing and accessing the data in a secure way. Among the
many solutions which exist, a new possibility has arisen for
around ten years: Blockchain. This concept deserves to be an-
alyzed carefully; indeed, due to its rising popularity, evermore
people mention it without fully understanding the technical
complexity which lies behind the word "Blockchain". A first
pedagogical di�erence can be made: from now on Blockchain
will refer to the overall theory, whereas "a" blockchain will re-
fer to a specific implementation of the theory. For instance,
Bitcoin (with a capital B) is the name for a given blockchain
which aims at storing the exchanges made with a demateri-
alized currency called "bitcoin". As a first definition, we can
say that Blockchain is a way of storing data through a net-
work of nodes which work on a peer-to-peer basis, without
any central authority, and in a secure way.

Bitcoin is not the only blockchain nowadays, but it is the
first one, implemented in 2008 [1]. Many other blockchains,
going beyond the mere storage of exchanges of a dematerial-
ized currency, have been created for ten years, like Ethereum,
and each one of them is part of the Blockchain world.

We believe that a first step into this world is to precisely
understand the nuts and bolts of Bitcoin: the la�er is proba-
bly the simplest blockchain that exists, but its key principles
can prove to be helpful before going further into the fairly
uncharted territory of Blockchain. Therefore this paper’s
purpose is not to depict all the subtleties of Bitcoin, but to
define as precisely as possible a mathematical framework to
grasp the gist of it.

1 Some Mathematical Preliminaries
In this first part, we present several mathematical tools and
notions which are ubiquitous within Blockchain [2] [3], and
so particularly necessary to fully understand Bitcoin.

• HASH FUNCTIONS

Definition 1 (Hash Function)
A hash function is a deterministic function which transforms
data of arbitrary (huge) size into a fixed-size number. The pur-
pose of a hash function is to characterize an input using the out-
put fixed-size number. To do so e�iciently, a hash function must
respect several qualitative properties:

• the "avalanche e�ect", meaning that a slight change in the
input must lead to a completely di�erent result;

• uniformity over the output range;

• a limited number of collisions, a collision being defined
by two di�erent inputs giving the same output value;

• the non-invertible property, meaning that it is not realistic
to compute the input from the output value.

So the gist of hash functions is that it is pre�y simple to
compute the output value for a given input, and by doing so
verifying that the la�er has not been modified, whereas it is
extremely costly to find the input from a given output.

From the above definition, we see that the idea of hash
functions is rather simple: a function which computes an out-
put as a way of characterizing an input. But the construction
of a "good" hash function, according to the qualitative prop-
erties, is overly complex; it would be pointless to delve into
such details within this paper.

One of the most famous hash functions is SHA256, which
transforms any message (a string) into a binary number of
256 bits (which is sometimes wri�en as a 64-digit hexadeci-
mal number). To illustrate the avalanche e�et, we can notice
that SHA256(Blockchain) is worth:

625da44e4eaf58d61cf048d168aa6f5e492dea166d8bb54ec06c30de07db57e1

whereas SHA256(blockchain) is worth:

ef7797e13d3a75526946a3bcf00daec9fc9c9c4d51ddc7cc5df888f74dd434d1

•MERKLE TREE

Definition 2 (Merkle Tree)
A Merkle Tree is a way of storing a potentially huge amount of
data, while providing the user with a simple way to check that
the data have not been modified. To build a Merkle tree, let us
consider a hash function H and a set of data:

D = {d1, d2, . . . , dn}

The leaves of the tree are given by the hash values of the ele-
ments within D: H(d1), H(d2), etc. We can then build the tree
recursively. Let us assume an entire layer L is known, the first
node within the next layer is given by the hash value of the first
two nodes within L, the second node is given by the hash value
of the third and fourth nodes within L, etc. If there is an odd
number of nodes within L, then the last node within the new
layer is simply equal to the last node within L.

To make the comprehension of Merkle trees easier, we
provide the reader with a graphical example. We consider
D = {L1, L2, L3, L4}, and figure 1 shows the corresponding
Merkle tree.

Notes Coperneec

Notes Coperneec 1

Introduction
When it comes down to Data Science, most people directly
think of Machine Learning and its ever more powerful algo-
rithms; nonetheless Data Science would not be possible with-
out data, and the first condition for a widespread use consists
in storing and accessing the data in a secure way. Among the
many solutions which exist, a new possibility has arisen for
around ten years: Blockchain. This concept deserves to be an-
alyzed carefully; indeed, due to its rising popularity, evermore
people mention it without fully understanding the technical
complexity which lies behind the word "Blockchain". A first
pedagogical di�erence can be made: from now on Blockchain
will refer to the overall theory, whereas "a" blockchain will re-
fer to a specific implementation of the theory. For instance,
Bitcoin (with a capital B) is the name for a given blockchain
which aims at storing the exchanges made with a demateri-
alized currency called "bitcoin". As a first definition, we can
say that Blockchain is a way of storing data through a net-
work of nodes which work on a peer-to-peer basis, without
any central authority, and in a secure way.

Bitcoin is not the only blockchain nowadays, but it is the
first one, implemented in 2008 [1]. Many other blockchains,
going beyond the mere storage of exchanges of a dematerial-
ized currency, have been created for ten years, like Ethereum,
and each one of them is part of the Blockchain world.

We believe that a first step into this world is to precisely
understand the nuts and bolts of Bitcoin: the la�er is proba-
bly the simplest blockchain that exists, but its key principles
can prove to be helpful before going further into the fairly
uncharted territory of Blockchain. Therefore this paper’s
purpose is not to depict all the subtleties of Bitcoin, but to
define as precisely as possible a mathematical framework to
grasp the gist of it.

1 Some Mathematical Preliminaries
In this first part, we present several mathematical tools and
notions which are ubiquitous within Blockchain [2] [3], and
so particularly necessary to fully understand Bitcoin.

• HASH FUNCTIONS

Definition 1 (Hash Function)
A hash function is a deterministic function which transforms
data of arbitrary (huge) size into a fixed-size number. The pur-
pose of a hash function is to characterize an input using the out-
put fixed-size number. To do so e�iciently, a hash function must
respect several qualitative properties:

• the "avalanche e�ect", meaning that a slight change in the
input must lead to a completely di�erent result;

• uniformity over the output range;

• a limited number of collisions, a collision being defined
by two di�erent inputs giving the same output value;

• the non-invertible property, meaning that it is not realistic
to compute the input from the output value.

So the gist of hash functions is that it is pre�y simple to
compute the output value for a given input, and by doing so
verifying that the la�er has not been modified, whereas it is
extremely costly to find the input from a given output.

From the above definition, we see that the idea of hash
functions is rather simple: a function which computes an out-
put as a way of characterizing an input. But the construction
of a "good" hash function, according to the qualitative prop-
erties, is overly complex; it would be pointless to delve into
such details within this paper.

One of the most famous hash functions is SHA256, which
transforms any message (a string) into a binary number of
256 bits (which is sometimes wri�en as a 64-digit hexadeci-
mal number). To illustrate the avalanche e�et, we can notice
that SHA256(Blockchain) is worth:

625da44e4eaf58d61cf048d168aa6f5e492dea166d8bb54ec06c30de07db57e1

whereas SHA256(blockchain) is worth:

ef7797e13d3a75526946a3bcf00daec9fc9c9c4d51ddc7cc5df888f74dd434d1

•MERKLE TREE

Definition 2 (Merkle Tree)
A Merkle Tree is a way of storing a potentially huge amount of
data, while providing the user with a simple way to check that
the data have not been modified. To build a Merkle tree, let us
consider a hash function H and a set of data:

D = {d1, d2, . . . , dn}

The leaves of the tree are given by the hash values of the ele-
ments within D: H(d1), H(d2), etc. We can then build the tree
recursively. Let us assume an entire layer L is known, the first
node within the next layer is given by the hash value of the first
two nodes within L, the second node is given by the hash value
of the third and fourth nodes within L, etc. If there is an odd
number of nodes within L, then the last node within the new
layer is simply equal to the last node within L.

To make the comprehension of Merkle trees easier, we
provide the reader with a graphical example. We consider
D = {L1, L2, L3, L4}, and figure 1 shows the corresponding
Merkle tree.

Notes Coperneec 2

Definition 3 (Merkle Root)
The Merkle root for D = {d1, d2, . . . , dn} is denoted RH(D) and
is equal to the top hash of the corresponding Merkle tree.

• Asymmetric Cryptography

How to encrypt a message to make sure that only the
emi�er and the receiver will be able to decipher it? How to
verify that the so-called emi�er of a message is the true one?
Asymmetric cryptography [4] is a way to address those two
questions. The staple principle of asymmetric cryptography
is the use of public and private keys.

Definition 3 (Principles Of Asymmetric Cryptography)
We start with the encryption of a numeric message M. For in-
stance Max would like to send M to Mary, without anyone else
being able to read it. Max’s public and private keys are denoted
(KMax

pu ,KMax
pr), and Mary’s ones (KMary

pu ,KMary
pr). Max can encrypt

M by using an encryption function C and Mary’s public key:

V = C(KMary
pu ,M)

Once Mary has received the value V , she can decipher the mes-
sage using her private key and the deciphering function D asso-
ciated with C:

M = D(KMary
pr ,V)

The signature of a message M is the second question: how
can Mary be certain that Max is really the one who has emi�ed
the message? The solution is the following: Max sends to Mary
both M and the signature S where:

S = C(KMax
pr ,M)

Once Mary has received (S,M), she can decipher S with Max’s
public key:

m = D(KMax
pu , S)

If m = M, it proves that Max has really sent the message M.

The pivotal point is that the private key must always be
kept private: only his/her owner must know it, whereas the
public key can be sent freely to anyone. The RSA algorithm is
probably the most famous technique of asymmetric cryptog-
raphy: it is based on prime numbers to generate public and

private keys, and simple arithmetical operations (power func-
tion and modulos) are used to encrypt and decipher a mes-
sage.

2 A First Approach Of Bitcoin Via
Mathematics

As of now, H denotes the hash function SHA256.

Definition 4 (Entry)
An entry is, by definition, the staple piece of information which
is stored within a blockchain. To rephrase it, a blockchain’s
purpose is to store entries in a secure way. As of now, a generic
entry is denoted Tr; we choose this notation since, for Bitcoin,
an entry is actually a transaction between two entities.

Since we consider Bitcoin, an entry would be amere trans-
action: for instance Max sends 1.17 bitcoins to Mary. But by
writing this, we point out the first di�iculties a blockchain
such as Bitcoin faces: does Max really own 1.17 bitcoins? Are
we sure that Max has initiated such a transaction? To answer
those questions, we will introduce later the concept of valida-
tion protocol.

As we may easily imagine, a blockchain is a chain of
blocks; so we have to define what a block is.

Definition 5 (Block)
A block B is defined as a vector of entries. We denote its size NB:

B = (Tr1, . . . , TrNB

)

So to create a block, we just pile up entries.

To "chain" the blocks, another notion plays a significant
role: the proof-of-work, sometimes denoted PoW.

Definition 6 (Proof-Of-Work)
The proof-of-work is a mathematical problem, whose purpose is
to create a link between two blocks. This link will be material-
ized within the header of the second block. Someone trying to
work out the proof-of-work is called a miner.

Let us consider two blocks, denoted Bprev and B, and a num-
ber called bits and denoted b. b gauges how di�icult the proof-
of-work is: from b, a target number can be directly computed.
This target is a 64-digit hexadecimal number with several 0 for
its le� digits, for instance:

00000000000000000021047526c065745de75af 6dcd473556dced2bcedd4ca71

We assume that the hash of the previous block is known,
H(Bprev); we will see shortly a�er how to define the hash of
a given block. Solving the proof-of-work for the block B, also
known as mining the block B, amounts to finding a number,
called the "nonce", such that:

H
(
H(Bprev)⊕ RH(B)⊕ timestamp(t)⊕ b ⊕ nonce

)
 target

where

• ⊕ denotes the concatenation operation;

• timestamp(t) denotes the current time, up to the seconds.

Since H is a hash function, the only possibility to find a suit-
able nonce is to try brutally, by increasing the value of nonce
while t is moving. We assume that, at t0, we find a nonce nonce0

which solves the proof-of-work. The hash H(B) of the block B is
defined by:

H
�
H(Bprev)⊕ RH(B)⊕ timestamp(t0)⊕ b ⊕ nonce0

�
| {z }

H(B)

 target| {z }
by def inition

Since the hash of a block is defined recursively following
the above procedure (we supposed that H(Bprev) was already
known), we need an initialization: if B is the first block, there is
no previous block, so H(Bprev) is a mere convention.

Definition 7 (Block’s Header)
Once the proof-of-work has been solved for a couple of blocks
(Bprev ,B), we can define the header of the block B, using the
above notations:

Head(B) =
�
idm, H(Bprev), RM(B), timestamp(t0), b, nonce0, H(B)

�

where idm denotes the identity of the mining entity.

The proof-of-work is a pivotal notion in the world of
Blockchain. A few things are worth noticing.

It is called proof-of-work for a specific reason: solving the
above-mentioned mathematical problem is a way to prove
that you have dedicated some time to find the answer. Thus
you prove that you have worked. Indeed, sinceH is a one-way
function, the best method to find a valid nonce is to try every
possible value: if nonce does not fit, then nonce nonce + 1.
A "miner", i.e. someone with one (or many) computer(s) trying
to work out the proof-of-work, needs an ever-more important
computational power, since the di�iculty of the proof-of-work
is increasing with the number of "mined" blocks: b is adjusted
by an algorithm, it depends on the number of blocks already
present in Bitcoin.

Once a miner has solved the proof-of-work, it is easy for
anyone to check that the solution is correct: all it takes is to
compute the hash

H
�
H(Bprev)⊕ RH(B)⊕ timestamp(t0)⊕ b ⊕ nonce0

�

with t0 and nonce0 provided by the miner.
Since mining requires some computational power, it is

worth doing it if there is a reward: no incentive would mean
no one ready to try. With Bitcoin, a miner who has correctly
solved a proof-of-work problem is rewarded with... bitcoins.
The reward is decreasing with the number of blocks in Bit-
coin. That is how the overall system can create new bitcoins.

To be�er understand all those mechanisms, we present in
the following sections all the steps which lead to the construc-
tion of Bitcoin, the blockchain(s) storing bitcoin transactions.

3 The construction of the Bitcoin
blockchain step by step

To construct the Bitcoin blockchain, the first point is to un-
derstand who the "players" are. In the introduction, we have

given a primary definition for a blockchain: a way of storing
data through a network of nodes which work on a peer-to-
peer basis without any central authority. So the staple players
are the nodes, and they are organized in a distributed manner
(Figure 2).

To have a deeper insight into the particularities of
Blockchain, we provide the user with two examples for the
two extreme kinds of networks [5].

The commercial banks within the Eurozone are part of a
centralized network, whose central authority is the European
Central Bank (ECB): the commercial banks depend directly
on the ECB for most of their activities, and by default, they
have no other choice than trusting the ECB. Confidence is a
decisive notion: the good working of a centralized network
hinges on the ability of the central node to be trusted. If the
confidence within the central authority disappears (corrup-
tion, lies, hack, etc.), the very network itself will dysfunction.
For instance, when it comes to central banks, there is a huge
amount of academic papers investigating how a central bank
can maintain a high level of confidence.

The purpose of Blockchain is to provide a framework to
implement distributed networks in a secure way. Indeed
without security, it is impossible for such a network to be
socially or economically acceptable. Here, since there is no
central or even semi-central authority, the question of confi-
dence is u�erly di�erent; that is why Blockchain is sometimes
considered a "revolution of trust". In the centralized and de-
centralized system, the e�orts aim at preventing the decisive
node(s) from behaving badly: in a perfect world, the deci-
sive node(s) should be impervious to corruption, computer
a�acks, or any other threat. In Blockchain, the problem is
not that a node can be subject to an a�ack, but how to make
sure that the overall network keeps working even if some of
its nodes are corrupt. To put it simply, there is no room for
confidence in Blockchain: it has to be replaced by computa-
tional techniques.

A�er this rather extensive introduction, we can delve into
the details of the Bitcoin blockchain’s construction [6].

Definition 8 (Node)
A node is the staple entity within the distributed network; in
Figure 2, each blue point represents a node. The physical reality

Notes Coperneec 3

Since H is a hash function, the only possibility to find a suit-
able nonce is to try brutally, by increasing the value of nonce
while t is moving. We assume that, at t0, we find a nonce nonce0

which solves the proof-of-work. The hash H(B) of the block B is
defined by:

H
�
H(Bprev)⊕ RH(B)⊕ timestamp(t0)⊕ b ⊕ nonce0

�
| {z }

H(B)

 target| {z }
by def inition

Since the hash of a block is defined recursively following
the above procedure (we supposed that H(Bprev) was already
known), we need an initialization: if B is the first block, there is
no previous block, so H(Bprev) is a mere convention.

Definition 7 (Block’s Header)
Once the proof-of-work has been solved for a couple of blocks
(Bprev ,B), we can define the header of the block B, using the
above notations:

Head(B) =
�
idm, H(Bprev), RM(B), timestamp(t0), b, nonce0, H(B)

�

where idm denotes the identity of the mining entity.

The proof-of-work is a pivotal notion in the world of
Blockchain. A few things are worth noticing.

It is called proof-of-work for a specific reason: solving the
above-mentioned mathematical problem is a way to prove
that you have dedicated some time to find the answer. Thus
you prove that you have worked. Indeed, sinceH is a one-way
function, the best method to find a valid nonce is to try every
possible value: if nonce does not fit, then nonce nonce + 1.
A "miner", i.e. someone with one (or many) computer(s) trying
to work out the proof-of-work, needs an ever-more important
computational power, since the di�iculty of the proof-of-work
is increasing with the number of "mined" blocks: b is adjusted
by an algorithm, it depends on the number of blocks already
present in Bitcoin.

Once a miner has solved the proof-of-work, it is easy for
anyone to check that the solution is correct: all it takes is to
compute the hash

H
�
H(Bprev)⊕ RH(B)⊕ timestamp(t0)⊕ b ⊕ nonce0

�

with t0 and nonce0 provided by the miner.
Since mining requires some computational power, it is

worth doing it if there is a reward: no incentive would mean
no one ready to try. With Bitcoin, a miner who has correctly
solved a proof-of-work problem is rewarded with... bitcoins.
The reward is decreasing with the number of blocks in Bit-
coin. That is how the overall system can create new bitcoins.

To be�er understand all those mechanisms, we present in
the following sections all the steps which lead to the construc-
tion of Bitcoin, the blockchain(s) storing bitcoin transactions.

3 The construction of the Bitcoin
blockchain step by step

To construct the Bitcoin blockchain, the first point is to un-
derstand who the "players" are. In the introduction, we have

given a primary definition for a blockchain: a way of storing
data through a network of nodes which work on a peer-to-
peer basis without any central authority. So the staple players
are the nodes, and they are organized in a distributed manner
(Figure 2).

To have a deeper insight into the particularities of
Blockchain, we provide the user with two examples for the
two extreme kinds of networks [5].

The commercial banks within the Eurozone are part of a
centralized network, whose central authority is the European
Central Bank (ECB): the commercial banks depend directly
on the ECB for most of their activities, and by default, they
have no other choice than trusting the ECB. Confidence is a
decisive notion: the good working of a centralized network
hinges on the ability of the central node to be trusted. If the
confidence within the central authority disappears (corrup-
tion, lies, hack, etc.), the very network itself will dysfunction.
For instance, when it comes to central banks, there is a huge
amount of academic papers investigating how a central bank
can maintain a high level of confidence.

The purpose of Blockchain is to provide a framework to
implement distributed networks in a secure way. Indeed
without security, it is impossible for such a network to be
socially or economically acceptable. Here, since there is no
central or even semi-central authority, the question of confi-
dence is u�erly di�erent; that is why Blockchain is sometimes
considered a "revolution of trust". In the centralized and de-
centralized system, the e�orts aim at preventing the decisive
node(s) from behaving badly: in a perfect world, the deci-
sive node(s) should be impervious to corruption, computer
a�acks, or any other threat. In Blockchain, the problem is
not that a node can be subject to an a�ack, but how to make
sure that the overall network keeps working even if some of
its nodes are corrupt. To put it simply, there is no room for
confidence in Blockchain: it has to be replaced by computa-
tional techniques.

A�er this rather extensive introduction, we can delve into
the details of the Bitcoin blockchain’s construction [6].

Definition 8 (Node)
A node is the staple entity within the distributed network; in
Figure 2, each blue point represents a node. The physical reality

AWALEE NOTES 5
‘

Notes Coperneec 4

behind a node is merely someone with one or many computers.
There are several kinds of nodes:

• simple nodes, whose role is to transmit information, with-
out holding a local copy of the blockchain;

• complete nodes, whose role is to mine new blocks; they
keep a local copy of the whole blockchain.

Here we have to mention the most important truth about
Blockchain: since there is no central authority, there is no spe-
cial node which would "wisely" keep the true version of the
blockchain, otherwise the whole construction would collapse:
you would just need to hack the "wise" node to hack the entire
system.

Every complete node keeps its own version of the
blockchain; but due to the nuts and bolts of the network,
those nodes reach a consensus. This consensus is sometimes
referred to as "the" blockchain, but the reality is that there is
no such thing as "the" blockchain.

⇤ STEP 1: a new entry in the system

Let us denote TrX the new entry, for instance Max sends
1.17 bitcoins to Mary; it enters the network via a node, de-
noted nenter , be it simple or complete. Every node has its own
validation protocol, i.e. a program to check whether an entry
is a valid one or not. A node can choose to use a standard
program for the validation step, but it is not compulsory: for
many reasons (experimental, fraud, local necessity, etc.) a
node can opt for a customized validation protocol.

Definition 9 (Validation Protocol)
A node does not trust the information it receives (no room for
trust in Blockchain), so it performs a few checks using its own
validation protocol. The la�er can be seen as a function:

PrV : N⇥ E ! {True, False}
(n, Tr) 7! PrV (n, Tr)

where N is the set containing all the nodes, and E the set of all
transactions.

So in our case, nenter computes PrV (nenter , TrX). If the an-
swer is True, nenter considers the transaction as a valid one:
TrX is transmi�ed to the nearby nodes. Otherwise, nenter re-
jects the entry, it is not transmi�ed.

What is a non-valid transaction? To be�er understand, we
focus on two kinds of issues: a fake identity and the double-
spending problem.

The fake identity is a classic issue: you pretend to be some-
one else for your own interest. For instance, if Mary could
steal Max’s identity, she could initiate the transaction "Max
sends 1.17 bitcoins to Mary". To cope with those issues, Bit-
coins is based on asymmetric cryptography: each transaction
is signed by the one who initiates it.

The double-spending problem means that someone could
try to use bitcoins he/she does not own. To make things clear,
it is like pretending in real life that you have 20 euros in your
pocket when you only have 10. The problem is particularly

critical with bitcoins (and other cryptocurrencies) because
you cannot rely on coins and notes, or any central authority.

With our notations, if nenter is a simple node, it will carry
out some elementary checks: for our model we assume that a
simple node only verifies that the transaction is signed by its
initiator.

If nenter is a complete node, we explain in step 2 what hap-
pens.

⇤ STEP 2: an entry reaches a complete node

Once a transaction TrX has entered the network, it can
eventually reach a complete node, denoted nc . Similarly to a
simple one, a complete node first computes PrV (n, TrX). The
checks carried out by a complete node are more extensive
than those of a simple node. In our model, we assume that
a complete node verifies both the identity of the initiator and
that there is no double spending.

Indeed it is possible for a complete node to make sure that
there is no double spending since it keeps its local version of
the blockchain: by accessing the history of all the transac-
tions, the node can give an answer to the following question:
does Max own 1.17 bitcoins he can send?

If the transaction TrX is deemed valid, nc adds it to its local
list of valid transactions Lncloc :

Lncloc .append(TrX)

and then, TrX is transmi�ed to the nearby nodes.

As a complete node "mines", it creates a new block by
adding into it some of the valid transactions present in its
local list Lncloc :

Bnc =
(
Tr1, . . . , TrN

)

where Tri 2 Lncloc for 1  i  N . Then nc tries to solve the
proof-of-work for (Bnc

last ,Bnc) where B
nc
last denotes the last block

of the local version of the blockchain.

The complete nodes are always competing with each
other: when there are enough valid transactions in its local
list, or a�er a given period of time, a new block is generated
by a complete node which then tries to solve the proof-of-
work problem. Once this is done, a new block with its header
is emi�ed by the presumed winner.

⇤ STEP 3: a new block has been emi�ed

When a new block Bnew and its header have been emi�ed
by a node n, it means that n claims to have solved a proof-
of-work problem. The new block is transmi�ed to the nearby
nodes: since there is no room for confidence in Blockchain,
again the nodes carry out many checks. Let us denote nr a
node which has just received Bnew : if n (complete) is trying to
solve its own proof-of-work, it stops. If n (complete or simple)
has already received Bnew , the la�er is automatically rejected.
Otherwise it starts by verifying that all the transactions in

Bnew are valid ones. If one transaction is not valid, Bnew is re-
jected.

Then n checks that the proof-of-work has been correctly
performed: it takes a single computation of the hash function
to see whether or not the output value is inferior to the target.
It is also quick to check that the Merkle root of the new block
and its hash value are correct.

If n is a complete node, the situation is a li�le bit more
complex. Indeed, in this particular case, n must decide
whether or not Bnew is going to be added to its local version
of the blockchain. The block is added if the hash of the previ-
ous block as it appears in the transmi�ed header Head(Bnew)
is equal to the hash of the last block in the local version of
the blockchain. In this case, n deletes the transactions within
Bnew from its local list, and theminer who has emi�ed the new
block is rewarded: n starts to create a new block with valid
transactions, and this new block begins with a specific line
saying that the winner of the previous competition (whose
identity is stored in Head(Bnew)) is rewarded with some bit-
coins.

Otherwise Bnew is stored by n: maybe n has not yet re-
ceived an intermediary block (?).

– What is a conflict of version?

The last point leads us to address the di�icult question
of conflicts within the nodes about the "true" version of the
blockchain: what happens when some nodes store a version
Bk1 of the blockchain, and other nodes a version Bk2?

First it is important to understand that such a situation
is possible. Let us assume that, at a given time t , all the
nodes have the same version Bk0 of the blockchain: so "the"
blockchain really exists. At t1 > t , two di�erent nodes emit
two di�erent valid blocks, Ba and Bb. Such a situation can oc-
cur because a complete node is free to choose any valid trans-
actions in its local list to generate a new block.

Since it takes time for a new block to reach every node
of the network, some nodes will receive Ba before Bb, and
others Bb before Ba. Those two blocks have been assumed to
be valid ones, so in both cases they will be added: at t2 > t ,
we may find nodes with a local version Bk0 + Ba, and others
with Bk0 + Bb. "The" blockchain no longer exists: this is called
a "fork".

– The rules of consensus

To solve such a discrepancy, rules of consensus are neces-
sary: a complete node will always keep the "longest" version
among all the local ones it stores. By "longest", the practi-
cal idea is to keep the version which has required the biggest
amount of work; as we will see shortly a�er, this is a way to
beef up the security of the blockchain.

Let us assume that, at t3 > t2, a node with local ver-
sion Bk0 + Ba emits a new valid block Bc , and that this block
reaches all the nodes before another one is emi�ed. The nodes
which have stored Bk0 + Ba as a local version will now keep
Bk0 + Ba + Bc . But the nodes which have stored Bk0 + Bb are

facing a dilemma.
When such a node n receives Bc , it is important to keep

several things in mind: the local version is Bk0 + Bb, but n has
also received Ba before. Since it was not possible to chain Ba

with Bk0 +Bb, Ba is stored (?). Bc cannot be added to Bk0 +Bb,
but it can be added to Ba: Ba +Bc . There is a doubt concerning
the blocks a�er Bk0: between Bk0 +Bb and Bk0 +Ba +Bc , n will
keep the longest chain, i.e. Bk0 +Ba+Bc . We reach a consensus
between all the nodes.

4 A First Insight Into The Security Of
The Blockchain

To have an overall view of Bitcoin, it is important to under-
stand why the above-mentioned mechanisms create a secure
blockchain.

The proof-of-work plays a determining role. It makes sure
that it is not possible to modify the history of the blockchain:
indeed changing one block means changing its hash and so
all the hash values of the next blocks. The whole chain is no
longer coherent: to change the past, it would take a impres-
sive amount of work to "rebuild" a coherent chain of blocks,
starting from the block which has been changed.

Then, if someone would like to cheat the overall system,
hacking a single node, even a complete one, for instance to
make it accept an illegal transaction, would have no e�ect.
Since there is no room for confidence in Blockchain, the other
nodes would immediately detect the illegal transaction and
reject it. So the only way to make the system accept an
illegal transaction would be to take over a majority of the
complete nodes. And even in this case, the illegal transac-
tion would only be recognized as a valid one by the corrupt
nodes; this would create a discrepancy between the versions
of the blockchain kept by the nodes: no consensus would
be reached. Thus, even if one manages to take over half of
the complete nodes, we could believe that the illegal trans-
action is legal by considering the majority of the nodes, but
we would also observe an absence of consensus. Of course
this situation is merely theoretical, since it would require a
computational e�ort beyond imagination to take over half of
the complete nodes.

Conclusion
In this paper, we have set forth a mathematical approach of
Bitcoin, as a first step into Blockchain. Mathematics notions
are ubiquitous within this world, and thus we believe it is
by using a framework inspired by mathematics that we may
achieve a sound comprehension of its most important mech-
anisms.

Nonetheless, it would not be wise to claim that we have
spanned all the aspects of this new technology. Blockchain is
an expending area, thus facingmany issues – for instance how
to challenge the proof-of-work, which requires huge amount

‘
Notes Coperneec 5

Bnew are valid ones. If one transaction is not valid, Bnew is re-
jected.

Then n checks that the proof-of-work has been correctly
performed: it takes a single computation of the hash function
to see whether or not the output value is inferior to the target.
It is also quick to check that the Merkle root of the new block
and its hash value are correct.

If n is a complete node, the situation is a li�le bit more
complex. Indeed, in this particular case, n must decide
whether or not Bnew is going to be added to its local version
of the blockchain. The block is added if the hash of the previ-
ous block as it appears in the transmi�ed header Head(Bnew)
is equal to the hash of the last block in the local version of
the blockchain. In this case, n deletes the transactions within
Bnew from its local list, and theminer who has emi�ed the new
block is rewarded: n starts to create a new block with valid
transactions, and this new block begins with a specific line
saying that the winner of the previous competition (whose
identity is stored in Head(Bnew)) is rewarded with some bit-
coins.

Otherwise Bnew is stored by n: maybe n has not yet re-
ceived an intermediary block (?).

– What is a conflict of version?

The last point leads us to address the di�icult question
of conflicts within the nodes about the "true" version of the
blockchain: what happens when some nodes store a version
Bk1 of the blockchain, and other nodes a version Bk2?

First it is important to understand that such a situation
is possible. Let us assume that, at a given time t , all the
nodes have the same version Bk0 of the blockchain: so "the"
blockchain really exists. At t1 > t , two di�erent nodes emit
two di�erent valid blocks, Ba and Bb. Such a situation can oc-
cur because a complete node is free to choose any valid trans-
actions in its local list to generate a new block.

Since it takes time for a new block to reach every node
of the network, some nodes will receive Ba before Bb, and
others Bb before Ba. Those two blocks have been assumed to
be valid ones, so in both cases they will be added: at t2 > t ,
we may find nodes with a local version Bk0 + Ba, and others
with Bk0 + Bb. "The" blockchain no longer exists: this is called
a "fork".

– The rules of consensus

To solve such a discrepancy, rules of consensus are neces-
sary: a complete node will always keep the "longest" version
among all the local ones it stores. By "longest", the practi-
cal idea is to keep the version which has required the biggest
amount of work; as we will see shortly a�er, this is a way to
beef up the security of the blockchain.

Let us assume that, at t3 > t2, a node with local ver-
sion Bk0 + Ba emits a new valid block Bc , and that this block
reaches all the nodes before another one is emi�ed. The nodes
which have stored Bk0 + Ba as a local version will now keep
Bk0 + Ba + Bc . But the nodes which have stored Bk0 + Bb are

facing a dilemma.
When such a node n receives Bc , it is important to keep

several things in mind: the local version is Bk0 + Bb, but n has
also received Ba before. Since it was not possible to chain Ba

with Bk0 +Bb, Ba is stored (?). Bc cannot be added to Bk0 +Bb,
but it can be added to Ba: Ba +Bc . There is a doubt concerning
the blocks a�er Bk0: between Bk0 +Bb and Bk0 +Ba +Bc , n will
keep the longest chain, i.e. Bk0 +Ba+Bc . We reach a consensus
between all the nodes.

4 A First Insight Into The Security Of
The Blockchain

To have an overall view of Bitcoin, it is important to under-
stand why the above-mentioned mechanisms create a secure
blockchain.

The proof-of-work plays a determining role. It makes sure
that it is not possible to modify the history of the blockchain:
indeed changing one block means changing its hash and so
all the hash values of the next blocks. The whole chain is no
longer coherent: to change the past, it would take a impres-
sive amount of work to "rebuild" a coherent chain of blocks,
starting from the block which has been changed.

Then, if someone would like to cheat the overall system,
hacking a single node, even a complete one, for instance to
make it accept an illegal transaction, would have no e�ect.
Since there is no room for confidence in Blockchain, the other
nodes would immediately detect the illegal transaction and
reject it. So the only way to make the system accept an
illegal transaction would be to take over a majority of the
complete nodes. And even in this case, the illegal transac-
tion would only be recognized as a valid one by the corrupt
nodes; this would create a discrepancy between the versions
of the blockchain kept by the nodes: no consensus would
be reached. Thus, even if one manages to take over half of
the complete nodes, we could believe that the illegal trans-
action is legal by considering the majority of the nodes, but
we would also observe an absence of consensus. Of course
this situation is merely theoretical, since it would require a
computational e�ort beyond imagination to take over half of
the complete nodes.

Conclusion
In this paper, we have set forth a mathematical approach of
Bitcoin, as a first step into Blockchain. Mathematics notions
are ubiquitous within this world, and thus we believe it is
by using a framework inspired by mathematics that we may
achieve a sound comprehension of its most important mech-
anisms.

Nonetheless, it would not be wise to claim that we have
spanned all the aspects of this new technology. Blockchain is
an expending area, thus facingmany issues – for instance how
to challenge the proof-of-work, which requires huge amount

AWALEE NOTES 5Notes Coperneec 6

A propos de Coperneec

« From Revolution to Performance »

Coperneec est un cabinet de conseil cross-sectoriel
spécialiste de la valorisation de la Data. Nous interve-
nons sur l’ensemble de la chaîne des savoir-faire au-
tour de la Data Science, la Data Analyse et du Data
Management.

Nos méthodes et techniques scientifiques éprouvées
permettent de résoudre des problématiques dans tous
les secteurs de l’industrie.

Notre vocation : extraire la connaissance à partir des
données et pérenniser les avancées technologiques
qui en découlent. La R&D est au cœur de notre ADN et
les expertises de nos consultants (data scientists, data
analysts, data engineers) sont en permanence challen-
gées afin d’accompagner au plus près les révolutions
technologiques et scientifiques.

Contactez-nous

Aymeric LISBONNE
Partner
alisbonne@coperneec.com
06 88 69 67 75

est une marque de

of electrical power, with other systems of proof (proof-of-
stake, proof-of-authority) – but also carrying the promise of
new perspectives.

It is on the la�er we would like to dwell on to finish
this paper. Bitcoin is only the simplest blockchain that ex-
ists; this technology can be used for more complex operations
than mere transactions. This is for instance the purpose of
Ethereum, the second most popular blockchain: Ethereum re-
lies on a cryptocurrency, ethereum, which can be of course
exchanged, but it is only a medium for something bigger.
Ethereum aims at storing smart contracts into its blockchain,
i.e. contracts whose behavior is predetermined in some source
code stored in a blockchain (for instance, if your house is burnt
down, then you receive somemoney). Since trust is pivotal for
any traditional contract, Ethereum’s bet is that it is possible
to use Blockchain technology to create a new kind of contract,
the so-called "smart contracts".

References
[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic

cash system. www.bitcoin.org, 2008.

[2] Della Chiesa. Hiault and Tequi. Blockchain, vers de nou-
velles chaînes de valeurs. Prospectives Accuracy, 2018.

[3] Laurent Leloup. Blockchain, la révolution de la confiance.
Eyrolles, 2018.

[4] Johannes Buchmann. Introduction à la cryptographie.
Dunod, 2006.

[5] Philippe Rodriguez. La révolution Blockchain. Dunod,
2017.

[6] Gérard Dréan. La blockchain pour les nuls.
www.contrepoints.org, oct 2016.

of electrical power, with other systems of proof (proof-of-
stake, proof-of-authority) – but also carrying the promise of
new perspectives.

It is on the la�er we would like to dwell on to finish
this paper. Bitcoin is only the simplest blockchain that ex-
ists; this technology can be used for more complex operations
than mere transactions. This is for instance the purpose of
Ethereum, the second most popular blockchain: Ethereum re-
lies on a cryptocurrency, ethereum, which can be of course
exchanged, but it is only a medium for something bigger.
Ethereum aims at storing smart contracts into its blockchain,
i.e. contracts whose behavior is predetermined in some source
code stored in a blockchain (for instance, if your house is burnt
down, then you receive somemoney). Since trust is pivotal for
any traditional contract, Ethereum’s bet is that it is possible
to use Blockchain technology to create a new kind of contract,
the so-called "smart contracts".

References
[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic

cash system. www.bitcoin.org, 2008.

[2] Della Chiesa. Hiault and Tequi. Blockchain, vers de nou-
velles chaînes de valeurs. Prospectives Accuracy, 2018.

[3] Laurent Leloup. Blockchain, la révolution de la confiance.
Eyrolles, 2018.

[4] Johannes Buchmann. Introduction à la cryptographie.
Dunod, 2006.

[5] Philippe Rodriguez. La révolution Blockchain. Dunod,
2017.

[6] Gérard Dréan. La blockchain pour les nuls.
www.contrepoints.org, oct 2016.

mailto:alisbonne%40coperneec.com?subject=
https://coperneec.com/
http://https://coperneec.com/
https://www.linkedin.com/company/coperneec

